El 35% de las grandes compañías ha desarrollado totalmente la tecnología machine learning, mientras que otro 31% lo ha hecho en algunos departamentos concretos para funciones específicas, según un informe elaborado por Cloudera.
Un tercio de las compañías que ha implementado el machine learning en sus procesos, afirma que ya ha visto un retorno a esa inversión. Sin embargo, las empresas están de acuerdo en que existe una barrera principal: faltan recursos y talento. De hecho, el 51% dudan en implementar el machine learning, ya que no tienen la habilidad de implementarlo.
La mitad de las grandes empresas han indicado que los datos están completamente embebidos en su organización, y que ya no serían capaces de trabajar sin ellos, mientras otro 36% indica que sí utiliza los datos, pero no de un modo transversal a la compañía. Además, el 49% de los negocios afirma que el departamento de tecnologías de la información es el responsable de maximizar el valor de los datos, y en el resto de los casos la responsabilidad descansa en los científicos de datos o en los propios usuarios.
Romain Picard, vicepresidente de Cloudera en el Sur de EMEA, ha resaltado que “el machine learning debe ser el próximo paso para las organizaciones basadas en datos. Esta clase de soluciones tienen el coste del desarrollo de habilidades internas y en diferenciación, además de concienciar a los líderes en cómo el machine learning es capaz de impulsar a las compañías”.
Las barreras del desarrollo del machine learning
Picard ha indicado que “el primer problema es la falta de conocimiento entre los líderes, y es que la causa principal que hace al machine learning resistirse es un aspecto de percepciones, ya que los negocios aun no confían que en la capacidad de las máquinas de reemplazar al ser humano en las tomas de decisiones”. En este sentido, el 79% cree que las personas toman mejores decisiones.
Por otra parte, no hay una visión clara de en qué consiste y qué beneficios ofrece el machine learning. Los tomadores de decisiones asocian el machine learning con elementos de inteligencia artificial y automatización: el 44% ha indicado que tiene que ver con algoritmos computacionales, otros que es el proceso de crear sistemas independientes de la intervención humana, y un tercer bloque lo asocia a la inteligencia artificial.
Finalmente, hay una falta esencial de talento. Menos de una de cada tres compañías cuenta con un equipo estable de científicos de datos con habilidades en machine learning. Además, tan solo un 52% de ellos se mantienen actualizados con noticias relevantes y específicas del sector de las tecnologías de la información.